$\frac{x+2}{\sqrt{x^{2}+2 x+3}}$
$\int \frac{(x+2)}{\sqrt{x^{2}+2 x+3}} d x=\frac{1}{2} \int \frac{2(x+2)}{\sqrt{x^{2}+2 x+3}} d x$
$=\frac{1}{2} \int \frac{2 x+4}{\sqrt{x^{2}+2 x+3}} d x$
$=\frac{1}{2} \int \frac{2 x+2}{\sqrt{x^{2}+2 x+3}} d x+\frac{1}{2} \int \frac{2}{\sqrt{x^{2}+2 x+3}} d x$
$=\frac{1}{2} \int \frac{2 x+2}{\sqrt{x^{2}+2 x+3}} d x+\int \frac{1}{\sqrt{x^{2}+2 x+3}} d x$
Let $I_{1}=\int \frac{2 x+2}{\sqrt{x^{2}+2 x+3}} d x$ and $I_{2}=\int \frac{1}{\sqrt{x^{2}+2 x+3}} d x$
$\therefore \int \frac{x+2}{\sqrt{x^{2}+2 x+3}} d x=\frac{1}{2} I_{1}+I_{2}$ ...(1)
Then, $I_{1}=\int \frac{2 x+2}{\sqrt{x^{2}+2 x+3}} d x$
Let $x^{2}+2 x+3=t$
$\Rightarrow(2 x+2) d x=d t$
$I_{1}=\int \frac{d t}{\sqrt{t}}=2 \sqrt{t}=2 \sqrt{x^{2}+2 x+3}$ ...(2)
$I_{2}=\int \frac{1}{\sqrt{x^{2}+2 x+3}} d x$
$\Rightarrow x^{2}+2 x+3=x^{2}+2 x+1+2=(x+1)^{2}+(\sqrt{2})^{2}$
$\therefore I_{2}=\int \frac{1}{\sqrt{(x+1)^{2}+(\sqrt{2})^{2}}} d x=\log (x+1)+\sqrt{x^{2}+2 x+3} \mid$ ...(3)
Using equations (2) and (3) in (1), we obtain
$\int \frac{x+2}{\sqrt{x^{2}+2 x+3}} d x=\frac{1}{2}\left[2 \sqrt{x^{2}+2 x+3}\right]+\log \left|(x+1)+\sqrt{x^{2}+2 x+3}\right|+\mathrm{C}$
$=\sqrt{x^{2}+2 x+3}+\log \left|(x+1)+\sqrt{x^{2}+2 x+3}\right|+\mathrm{C}$