Question:
$\frac{e^{2 x}-1}{e^{2 x}+1}$
Solution:
$\frac{e^{2 x}-1}{e^{2 x}+1}$
Dividing numerator and denominator by ex, we obtain
$\frac{\frac{\left(e^{2 x}-1\right)}{e^{x}}}{\frac{\left(e^{2 x}+1\right)}{e^{x}}}=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$
Let $e^{x}+e^{-x}=t$
$\therefore\left(e^{x}-e^{-x}\right) d x=d t$
$\Rightarrow \int \frac{e^{2 x}-1}{e^{2 x}+1} d x=\int \frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} d x$
$=\int \frac{d t}{t}$
$=\log |t|+\mathrm{C}$
$=\log \left|e^{x}+e^{-x}\right|+\mathrm{C}$