Question:
$\tan ^{4} x$
Solution:
$\tan ^{4} x$
$=\tan ^{2} x \cdot \tan ^{2} x$
$=\left(\sec ^{2} x-1\right) \tan ^{2} x$
$=\sec ^{2} x \tan ^{2} x-\tan ^{2} x$
$=\sec ^{2} x \tan ^{2} x-\left(\sec ^{2} x-1\right)$
$=\sec ^{2} x \tan ^{2} x-\sec ^{2} x+1$
$\begin{aligned} \therefore \int \tan ^{4} x d x &=\int \sec ^{2} x \tan ^{2} x d x-\int \sec ^{2} x d x+\int 1 \cdot d x \\ &=\int \sec ^{2} x \tan ^{2} x d x-\tan x+x+\mathrm{C} \end{aligned}$ ...(1)
Consider $\int \sec ^{2} x \tan ^{2} x d x$
Let $\tan x=t \Rightarrow \sec ^{2} x d x=d t$
From equation (1), we obtain
$\int \tan ^{4} x d x=\frac{1}{3} \tan ^{3} x-\tan x+x+\mathrm{C}$