Prove

Question:

$\int\left(2 x^{2}-3 \sin x+5 \sqrt{x}\right) d x$

Solution:

$\int\left(2 x^{2}-3 \sin x+5 \sqrt{x}\right) d x$

$=2 \int x^{2} d x-3 \int \sin x d x+5 \int x^{\frac{1}{2}} d x$

$=\frac{2 x^{3}}{3}-3(-\cos x)+5\left(\frac{x^{\frac{3}{2}}}{3}\right)+\mathrm{C}$

$=\frac{2}{3} x^{3}+3 \cos x+\frac{10}{3} x^{\frac{3}{2}}+\mathrm{C}$

Leave a comment