Prove $3 \cos ^{-1} x=\cos ^{-1}\left(4 x^{3}-3 x\right), x \in\left[\frac{1}{2}, 1\right]$

Question:

Prove $3 \cos ^{-1} x=\cos ^{-1}\left(4 x^{3}-3 x\right), x \in\left[\frac{1}{2}, 1\right]$

Solution:

To prove: $3 \cos ^{-1} x=\cos ^{-1}\left(4 x^{3}-3 x\right), x \in\left[\frac{1}{2}, 1\right]$

Let $x=\cos \theta$. Then, $\cos ^{-1} x=\theta$

We have,

R.H.S. $=\cos ^{-1}\left(4 x^{3}-3 x\right)$

$=\cos ^{-1}\left(4 \cos ^{3} \theta-3 \cos \theta\right)$

$=\cos ^{-1}(\cos 3 \theta)$

$=3 \theta$

$=3 \cos ^{-1} x$

$=$ L.H.S.

Leave a comment