Prove

Question:

$\frac{\sin ^{3} x+\cos ^{3} x}{\sin ^{2} x \cos ^{2} x}$

 

Solution:

$\frac{\sin ^{3} x+\cos ^{3} x}{\sin ^{2} x \cos ^{2} x}=\frac{\sin ^{3} x}{\sin ^{2} x \cos ^{2} x}+\frac{\cos ^{3} x}{\sin ^{2} x \cos ^{2} x}$

$=\frac{\sin x}{\cos ^{2} x}+\frac{\cos x}{\sin ^{2} x}$

$=\tan x \sec x+\cot x \operatorname{cosec} x$

$\begin{aligned} \therefore \int \frac{\sin ^{3} x+\cos ^{3} x}{\sin ^{2} x \cos ^{2} x} d x &=\int(\tan x \sec x+\cot x \operatorname{cosec} x) d x \\ &=\sec x-\operatorname{cosec} x+\mathrm{C} \end{aligned}$

Leave a comment