Question:
$\frac{2 \cos x-3 \sin x}{6 \cos x+4 \sin x}$
Solution:
$\frac{2 \cos x-3 \sin x}{6 \cos x+4 \sin x}=\frac{2 \cos x-3 \sin x}{2(3 \cos x+2 \sin x)}$
Let $3 \cos x+2 \sin x=t$
$\therefore(-3 \sin x+2 \cos x) d x=d t$
$\int \frac{2 \cos x-3 \sin x}{6 \cos x+4 \sin x} d x=\int \frac{d t}{2 t}$
$=\frac{1}{2} \int \frac{1}{t} d t$
$=\frac{1}{2} \log |t|+\mathrm{C}$
$=\frac{1}{2} \log |2 \sin x+3 \cos x|+\mathrm{C}$