Prove

Question:

$\frac{2 x}{1+x^{2}}$

Solution:

Let $1+x^{2}=t$

$\therefore 2 x d x=d t$

$\Rightarrow \int \frac{2 x}{1+x^{2}} d x=\int \frac{1}{t} d t$

$=\log |t|+\mathrm{C}$

$=\log \left|1+x^{2}\right|+\mathrm{C}$

$=\log \left(1+x^{2}\right)+\mathrm{C}$

Leave a comment