Prove

Question:

$\frac{x}{\sqrt{x+4}}, x>0$

Solution:

Let $\mathrm{I}=\int \frac{x}{(x+4)} d x$
put $x+4=t$

$\Rightarrow d x=d t$

Now, $\mathrm{I}=\int \frac{(t-4)}{\sqrt{t}} d t$

$=\int\left(\sqrt{t}-4 t^{-1 / 2}\right) d t$

$=\frac{2}{3} t^{3 / 2}-4\left(2 t^{1 / 2}\right)+\mathrm{C}$

$=\frac{2}{3} \cdot t . t^{1 / 2}-8 t^{1 / 2}+\mathrm{C}$

$=\frac{2}{3}(x+4) \sqrt{x+4}-8 \sqrt{x+4}+\mathrm{C}$

$=\frac{2}{3} x \sqrt{x+4}+\frac{8}{3} \sqrt{x+4}-8 \sqrt{x+4}+\mathrm{C}$

$=\frac{2}{3} x \sqrt{x+4}-\frac{16}{3} \sqrt{x+4}+\mathrm{C}$

$=\frac{2}{3}(\sqrt{x+4})(x-8)+\mathrm{C}$

Leave a comment