Question:
$\frac{x-1}{\sqrt{x^{2}-1}}$
Solution:
$\int \frac{x-1}{\sqrt{x^{2}-1}} d x=\int \frac{x}{\sqrt{x^{2}-1}} d x-\int \frac{1}{\sqrt{x^{2}-1}} d x$ ...(1)
For $\int \frac{x}{\sqrt{x^{2}-1}} d x$, let $x^{2}-1=t \Rightarrow 2 x d x=d t$
$\therefore \int \frac{x}{\sqrt{x^{2}-1}} d x=\frac{1}{2} \int \frac{d t}{\sqrt{t}}$
$=\frac{1}{2} \int t^{-\frac{1}{2}} d t$
$=\frac{1}{2}\left[2 t^{\frac{1}{2}}\right]$
$=\sqrt{t}$
$=\sqrt{x^{2}-1}$
From (1), we obtain
$\int \frac{x-1}{\sqrt{x^{2}-1}} d x=\int \frac{x}{\sqrt{x^{2}-1}} d x-\int \frac{1}{\sqrt{x^{2}-1}} d x$ $\left[\int \frac{1}{\sqrt{x^{2}-a^{2}}} d t=\log \left|x+\sqrt{x^{2}-a^{2}}\right|\right]$
$=\sqrt{x^{2}-1}-\log \left|x+\sqrt{x^{2}-1}\right|+\mathrm{C}$