Question:
$\tan ^{2}(2 x-3)$
Solution:
$\tan ^{2}(2 x-3)=\sec ^{2}(2 x-3)-1$
Let $2 x-3=t$
$\therefore 2 d x=d t$
$\Rightarrow \int \tan ^{2}(2 x-3) d x$
$=\int\left[\sec ^{2}(2 x-3)-1\right] d x$
$=\int\left[\sec ^{2} t-1\right] \frac{d t}{2}$
$=\frac{1}{2}\left[\int \sec ^{2} t d t-\int 1 d t\right]$
$=\frac{1}{2}[\tan t-t+\mathrm{C}]$
$=\frac{1}{2}[\tan (2 x-3)-(2 x-3)+\mathrm{C}]$