Probability of solving specific problem independently by $A$ and $B$ are $\frac{1}{2}$ and $\frac{1}{3}$ respectively. If both try to solve the problem independently, find the probability that
(i) the problem is solved (ii) exactly one of them solves the problem.
Probability of solving the problem by $A, P(A)=\frac{1}{2}$
Probability of solving the problem by $B, P(B)=\frac{1}{3}$
Since the problem is solved independently by A and B,
$\therefore \mathrm{P}(\mathrm{AB})=\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B})=\frac{1}{2} \times \frac{1}{3}=\frac{1}{6}$
$\mathrm{P}\left(\mathrm{A}^{\prime}\right)=1-\mathrm{P}(\mathrm{A})=1-\frac{1}{2}=\frac{1}{2}$
$\mathrm{P}\left(\mathrm{B}^{\prime}\right)=1-\mathrm{P}(\mathrm{B})=1-\frac{1}{3}=\frac{2}{3}$
i. Probability that the problem is solved $=P(A \cup B)$
$=P(A)+P(B)-P(A B)$
$=\frac{1}{2}+\frac{1}{3}-\frac{1}{6}$
$=\frac{4}{6}$
$=\frac{2}{3}$
(ii) Probability that exactly one of them solves the problem is given by, $\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}\left(\mathrm{B}^{\prime}\right)+\mathrm{P}(\mathrm{B}) \cdot \mathrm{P}\left(\mathrm{A}^{\prime}\right)$
$=\frac{1}{2} \times \frac{2}{3}+\frac{1}{2} \times \frac{1}{3}$
$=\frac{1}{3}+\frac{1}{6}$
$=\frac{1}{2}$