P and Q are the points of trisection of the diagonal BD of a parallelogram ABCD.

Question:

P and Q are the points of trisection of the diagonal BD of a parallelogram ABCD. Prove that CQ is parallel to AP. Prove also that AC bisects PQ.

Solution:

We know that,

Diagonals of a parallelogram bisect each other.

Therefore, OA = OC and OB = OD

Since P and Q are point of intersection of BD.

Therefore, BP = PQ = QD

Now, OB = OD are BP = QD

⟹ OB - BP = OD - QD

⟹ OP = OQ

Thus in quadrilateral APCQ, we have

OA = OC and OP = OQ

Diagonals of Quadrilateral APCQ bisect each other.

Therefore APCQ is a parallelogram.

Hence AP ∥ CQ.

Leave a comment