Question:
P and Q are points on the sides AB and AC, respectively, of ∆ ABC. If AP = 2 cm, PB = 4 cm, AQ = 3 cm and QC = 6 cm, show that BC = 3PQ.
Solution:
We have:
$\frac{A P}{A B}=\frac{2}{6}=\frac{1}{3}$ and $\frac{\mathrm{AQ}}{\mathrm{AC}}=\frac{3}{9}=\frac{1}{3}$
$\Rightarrow \frac{\mathrm{AP}}{\mathrm{AB}}=\frac{\mathrm{AQ}}{\mathrm{AC}}$
In $\triangle A P Q$ and $\triangle A B C$, we have :
$\frac{A P}{A B}=\frac{A Q}{A C}$
$\angle A=\angle A$
Therefore, by AA similarity theorem, we get:
$\triangle A P Q \sim \triangle A B C$
Hence, $\frac{P Q}{B C}=\frac{A Q}{A C}=\frac{1}{3}$
$\Rightarrow \frac{P Q}{B C}=\frac{1}{3}$
$\Rightarrow B C=3 P Q$
This completes the proof.