One equation of a pair of dependent linear equations is – 5x+ 7y – 2 = 0. The second equation can be
(a) 10x + 14y + 4=0
(b)-10x-14y + 4 =0
(c) -10x + 14y + 4 = 0
(d) 10x-14y + 4=0
(d) Condition for dependent linear equations
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}=\frac{1}{k}$ ...(i)
Given equation of line is, $-5 x+7 y-2=0$
Here, $a_{1}=-5, b_{1}=7, c_{1}=-2$
From Eq. (i), $-\frac{5}{a_{2}}=\frac{7}{b_{2}}=-\frac{2}{c_{2}}=\frac{1}{k}$ [say]
$\Rightarrow$ $a_{2}=-5 k, b_{2}=7 k, c_{2}=-2 k$
where, $k$ is any arbitrary constant.
Putting $k=2$, then $\quad a_{2}=-10, b_{2}=14$
and $c_{2}=-4$
$\therefore$ The required equation of line becomes
$a_{2} x+b_{2} y+c_{2}=0$
$\Rightarrow \quad-10 x+14 y-4=0$
$\Rightarrow \quad 10 x-14 y+4=0$