On which of the following intervals is the function $f$ given by $f(x)=x^{100}+\sin x-1$ strictly decreasing?
(A) $(0,1)$
(B) $\left(\frac{\pi}{2}, \pi\right)$
(C) $\left(0, \frac{\pi}{2}\right)$
(D) None of these
We have,
$f(x)=x^{100}+\sin x-1$
$\therefore f^{\prime}(x)=100 x^{99}+\cos x$
In interval $(0,1), \cos x>0$ and $100 x^{99}>0$
$\therefore f^{\prime}(x)>0$
Thus, function f is strictly increasing in interval (0, 1).
In interval $\left(\frac{\pi}{2}, \pi\right), \cos x<0$ and $100 x^{99}>0 .$ Also, $100 x^{99}>\cos x$
$\therefore f^{\prime}(x)>0$ in $\left(\frac{\pi}{2}, \pi\right)$.
Thus, function $f$ is strictly increasing in interval $\left(\frac{\pi}{2}, \pi\right)$.
In interval $\left(0, \frac{\pi}{2}\right), \cos x>0$ and $100 x^{99}>0$.'
$\therefore 100 x^{99}+\cos x>0$
$\Rightarrow f^{\prime}(x)>0$ on $\left(0, \frac{\pi}{2}\right)$
$\therefore f$ is strictly increasing in interval $\left(0, \frac{\pi}{2}\right)$.
Hence, function f is strictly decreasing in none of the intervals.
The correct answer is D.