On increasing the radii of the base and the height of a cone by 20%, its volume will increase by
(a) 20%
(b) 40%
(c) 60%
(d) 72.8%
(d) 72.8%
Let the original radius of the cone be r and height be h.
Then, original volume $=\frac{1}{3} \pi r^{2} h$
Let $\frac{1}{3} \pi r^{2} h=V$
New radius $=120 \%$ of $r$
$=\frac{120 r}{100}$
$=\frac{6 r}{5}$
New height = 120% of h
$=\frac{120 h}{100}$
$=\frac{6 h}{5}$
Hence, the new volume $=\frac{1}{3} \pi \times\left(\frac{6 \mathrm{r}}{5}\right)^{2} \times \frac{6 \mathrm{~h}}{5}$
$=\frac{216}{125}\left(\frac{1}{3} \pi r^{2} h\right)$
$=\frac{216}{125} \mathrm{~V}$
Increase in volume $=\left(\frac{216}{125} \mathrm{~V}-\mathrm{V}\right)$
$=\frac{91 \mathrm{~V}}{125}$
Increase in $\%$ of the volume $=\left(\frac{91 \mathrm{~V}}{125} \times \frac{1}{\mathrm{~V}} \times 100\right) \%$
$=72.8 \%$