Question:
On decreasing the radius of a circle by 30%, its area is decreased by
(a) 30%
(b) 60%
(c) 45%
(d) none of these
Solution:
(d) None of these
Let r be the original radius.
Thus, we have:
Original area $=\pi r^{2}$
Also,
New radius $=70 \%$ of $r$
$=\left(\frac{70}{100} \times r\right)$
$=\frac{7 r}{10}$
New area $=\pi \times\left(\frac{7 r}{10}\right)^{2}$
$=\frac{49 \pi r^{2}}{100}$
Decrease in the area $=\left(\pi r^{2}-\frac{49 \pi r^{2}}{100}\right)$
$=\frac{59 \pi r^{2}}{100}$
Thus, we have:
Decrease in the area $=\left(\frac{59 \pi r^{2}}{100} \times \frac{1}{\pi r^{2}} \times 100\right) \%$
$=51 \%$