Of all the closed cylindrical cans (right circular), which enclose a given volume of $100 \mathrm{~cm}^{3}$, which has the minimum surface area?
Let $r$ and $h$ be the radius and height of the cylinder, respectively. Then,
Volume $(V)$ of the cylinder $=\pi r^{2} h$
$\Rightarrow 100=\pi r^{2} h$
$\Rightarrow h=\frac{100}{\pi r^{2}}$
Surface area $(S)$ of the cylinder $=2 \pi r^{2}+2 \pi r h=2 \pi r^{2}+2 \pi r \times \frac{100}{\pi r^{2}}$
$\Rightarrow S=2 \pi r^{2}+\frac{200}{r}$
$\therefore \frac{d S}{d r}=4 \pi r-\frac{200}{r^{2}}$
For the maximum or minimum, we must have
$\frac{d S}{d r}=0$
$\Rightarrow 4 \pi r-\frac{200}{r^{2}}=0$
$\Rightarrow 4 \pi r^{3}=200$
$\Rightarrow r=\left(\frac{50}{\pi}\right)^{\frac{1}{3}}$
Now,
$\frac{\mathrm{d}^{2} \mathrm{~S}}{\mathrm{dr}^{2}}=4 \pi+\frac{400}{\mathrm{r}^{3}}$
$\Rightarrow \frac{d^{2} S}{d r^{2}}>0$ when $r=\left(\frac{50}{\pi}\right)^{\frac{1}{3}}$
Thus, the surface area is minimum when $r=\left(\frac{50}{\pi}\right)^{\frac{1}{3}}$.
At $r=\left(\frac{50}{\pi}\right)^{\frac{1}{3}}:$
$h=\frac{100}{\pi\left(\frac{50}{\pi}\right)^{\frac{2}{3}}}=2\left(\frac{50}{\pi}\right)^{\frac{1}{3}}$