Obtain the binding energy of the nuclei ${ }_{26}^{56} \mathrm{Fe}$ and ${ }_{83}^{209} \mathrm{Bi}$ in units of $\mathrm{MeV}$ from the following data:
$m\left({ }_{26}^{56} \mathrm{Fe}\right)=55.934939 \mathrm{u} m\left({ }_{83}^{209} \mathrm{Bi}\right)=208.980388 \mathrm{u}$
Atomic mass of ${ }_{26}^{56} \mathrm{Fe}, m_{1}=55.934939 \mathrm{u}$
${ }_{26}^{56} \mathrm{Fe}$ nucleus has 26 protons and $(56-26)=30$ neutrons
Where,
Mass of a proton, mH = 1.007825 u
Mass of a neutron, mn = 1.008665 u
∴Δm = 26 × 1.007825 + 30 × 1.008665 − 55.934939
= 26.20345 + 30.25995 − 55.934939
= 0.528461 u
But 1 u = 931.5 MeV/c2
∴Δm = 0.528461 × 931.5 MeV/c2
The binding energy of this nucleus is given as:
Eb1 = Δmc2
Where,
c = Speed of light
$\therefore E_{b 1}=0.528461 \times 931.5\left(\frac{\mathrm{MeV}}{c^{2}}\right) \times c^{2}$
= 492.26 MeV
Average binding energy per nucleon $=\frac{492.26}{56}=8.79 \mathrm{MeV}$
Atomic mass of ${ }_{83}^{209} \mathrm{Bi}, m_{2}=208.980388 \mathrm{u}$
${ }_{83}^{209}$ Bi nucleus has 83 protons and $(209-83) 126$ neutrons.
Hence, the mass defect of this nucleus is given as:
Δm' = 83 × mH + 126 × mn − m2
Where,
Mass of a proton, mH = 1.007825 u
Mass of a neutron, mn = 1.008665 u
∴Δm' = 83 × 1.007825 + 126 × 1.008665 − 208.980388
= 83.649475 + 127.091790 − 208.980388
= 1.760877 u
But 1 u = 931.5 MeV/c2
∴Δm' = 1.760877 × 931.5 MeV/c2
Hence, the binding energy of this nucleus is given as:
$E_{b 2}=\Delta m^{\prime} c^{2}$
$=1.760877 \times 931.5\left(\frac{\mathrm{MeV}}{c^{2}}\right) \times c^{2}$
= 1640.26 MeV
Average bindingenergy per nucleon $=\frac{1640.26}{209}=7.848 \mathrm{MeV}$