Obtain an expression for the mutual inductance between a long straight wire and a square loop of side a as shown in Fig. 6.21.
(a) Obtain an expression for the mutual inductance between a long straight wire and a square loop of side a as shown in Fig. 6.21.
(b) Now assume that the straight wire carries a current of 50 A and the loop is moved to the right with a constant velocity, v = 10 m/s.
Calculate the induced emf in the loop at the instant when x = 0.2 m.
Take a = 0.1 m and assume that the loop has a large resistance.
(a) Take a small element dy in the loop at a distance y from the long straight wire (as shown in the given figure).
Magnetic flux associated with element $d y, d \phi=B d A$
Where,
dA = Area of element dy = a dy
B = Magnetic field at distance y
$=\frac{\mu_{0} I}{2 \pi \mathrm{y}}$
I = Current in the wire
$\mu_{0}=$ Permeability of free space $=4 \pi \times 10^{-7} \mathrm{Tm} \mathrm{A}^{-1}$
$\therefore d \phi=\frac{\mu_{0} I a}{2 \pi} \frac{d y}{y}$
$\phi=\frac{\mu_{0} I a}{2 \pi} \int \frac{d y}{y}$
$y$ tends from $x$ to $a+x$.
$\therefore \phi=\frac{\mu_{0} I a}{2 \pi} \int_{x}^{a+x} \frac{d y}{y}$
$=\frac{\mu_{0} I a}{2 \pi}\left[\log _{e} y\right]_{x}^{a+x}$
$=\frac{\mu_{0} I a}{2 \pi} \log _{e}\left(\frac{a+x}{x}\right)$
For mutual inductance $M$, the flux is given as:
$\phi=M I$
$\therefore M I=\frac{\mu_{0} I a}{2 \pi} \log _{e}\left(\frac{a}{x}+1\right)$
$M=\frac{\mu_{0} a}{2 \pi} \log _{e}\left(\frac{a}{x}+1\right)$
(b) Emf induced in the loop, e $=B^{\prime} a v=\left(\frac{\mu_{0} I}{2 \pi x}\right) a v$
Given,
I = 50 A
x = 0.2 m
a = 0.1 m
v = 10 m/s
$e=\frac{4 \pi \times 10^{-7} \times 50 \times 0.1 \times 10}{2 \pi \times 0.2}$
$e=5 \times 10^{-5} \mathrm{~V}$