Number of solutions of the equation tan x + sec x = 2 cos x lying in the interval [0, 2π] is
(a) 0
(b) 1
(c) 2
(d) 3
tan x + sec x = 2 cos x in [0, 2π]
i.e $\frac{\sin x}{\cos x}+\frac{1}{\cos x}=2 \cos x$ where $x \notin(2 x+1) \frac{\pi}{2}$ ( $\because \cos x$ is not defined)
i.e sin x + 1 = 2 cos2x
⇒ sin x + 1 = 2(1 − sin2x) (∵ sin2x + cos2x = 1)
i.e 2 sin2x + sin x − 1 = 0
i.e 2 sin2x + 2 sin x – sin x – 1 = 0
i.e 2 sin x (sin x + 1) −1 (sin x + 1) = 0
i.e (2 sin x − 1) (sin x + 1) = 0
i.e $\sin x=\frac{1}{2}$ or $\sin x=-1$
i.e for $\sin x=\frac{1}{2}$
we have $x$ is I or II Quadrant
i.e $x=\frac{\pi}{6}$ or $\pi-\frac{\pi}{6}=\frac{\sqrt{\pi}}{6}$ and for $\sin x=-1$
$x=\frac{3 \pi}{2}$ which is not possible $\quad \because x \notin(2 x+1) \frac{\pi}{2}$
Hence, tan x + sec x = 2 cos x has 2 columns in [0, 2
Hence, the correct answer is option C.