Question.
Neon gas is generally used in the sign boards. If it emits strongly at 616 nm, calculate
(a) the frequency of emission,
(b) distance traveled by this radiation in 30 s
(c) energy of quantum and
(d) number of quanta present if it produces 2 J of energy.
Neon gas is generally used in the sign boards. If it emits strongly at 616 nm, calculate
(a) the frequency of emission,
(b) distance traveled by this radiation in 30 s
(c) energy of quantum and
(d) number of quanta present if it produces 2 J of energy.
Solution:
Wavelength of radiation emitted $=616 \mathrm{~nm}=616 \times 10^{-9} \mathrm{~m}$ (Given)
(a) Frequency of emission $(v)$
$v=\frac{c}{\lambda}$
Where, $c=$ velocity of
radiation $\lambda=$ wavelength of
radiation
Substituting the values in the given expression of $(v):$
$v=\frac{3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}}{616 \times 10^{-9} \mathrm{~m}}$
$=4.87 \times 10^{8} \times 10^{9} \times 10^{-3} \mathrm{~s}^{-1} \mathrm{~V}$
$=4.87 \times 10^{14} \mathrm{~s}^{-1}$
Frequency of emission $(v)=4.87 \times 10^{14} \mathrm{~s}^{-1}$
(b) Velocity of radiation, $(c)=3.0 \times 10^{8} \mathrm{~ms}^{-1}$
Distance travelled by this radiation in $30 \mathrm{~s}$
$=\left(3.0 \times 10^{8} \mathrm{~ms}^{-1}\right)(30 \mathrm{~s})$
$=9.0 \times 10^{9} \mathrm{~m}$
(c) Energy of quantum $(E)=h v$
$\left(6.626 \times 10^{-34} \mathrm{Js}\right)\left(4.87 \times 10^{14} \mathrm{~s}^{-1}\right)$
Energy of quantum $\left.(E)=32.27 \times 10^{-20}\right]$
(d) Energy of one photon (quantum) $=32.27 \times 10^{-20} \mathrm{~J}$
Therefore, $32.27 \times 10^{-20} \mathrm{~J}$ of energy is present in 1 quantum.
Number of quanta in $2 \mathrm{~J}$ of energy
$=\frac{2 \mathrm{~J}}{32.27 \times 10^{-20} \mathrm{~J}}$
$=6.19 \times 10^{18}$
$=6.2 \times 10^{18}$
Wavelength of radiation emitted $=616 \mathrm{~nm}=616 \times 10^{-9} \mathrm{~m}$ (Given)
(a) Frequency of emission $(v)$
$v=\frac{c}{\lambda}$
Where, $c=$ velocity of
radiation $\lambda=$ wavelength of
radiation
Substituting the values in the given expression of $(v):$
$v=\frac{3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}}{616 \times 10^{-9} \mathrm{~m}}$
$=4.87 \times 10^{8} \times 10^{9} \times 10^{-3} \mathrm{~s}^{-1} \mathrm{~V}$
$=4.87 \times 10^{14} \mathrm{~s}^{-1}$
Frequency of emission $(v)=4.87 \times 10^{14} \mathrm{~s}^{-1}$
(b) Velocity of radiation, $(c)=3.0 \times 10^{8} \mathrm{~ms}^{-1}$
Distance travelled by this radiation in $30 \mathrm{~s}$
$=\left(3.0 \times 10^{8} \mathrm{~ms}^{-1}\right)(30 \mathrm{~s})$
$=9.0 \times 10^{9} \mathrm{~m}$
(c) Energy of quantum $(E)=h v$
$\left(6.626 \times 10^{-34} \mathrm{Js}\right)\left(4.87 \times 10^{14} \mathrm{~s}^{-1}\right)$
Energy of quantum $\left.(E)=32.27 \times 10^{-20}\right]$
(d) Energy of one photon (quantum) $=32.27 \times 10^{-20} \mathrm{~J}$
Therefore, $32.27 \times 10^{-20} \mathrm{~J}$ of energy is present in 1 quantum.
Number of quanta in $2 \mathrm{~J}$ of energy
$=\frac{2 \mathrm{~J}}{32.27 \times 10^{-20} \mathrm{~J}}$
$=6.19 \times 10^{18}$
$=6.2 \times 10^{18}$