Name the quadrilateral formed,

Question.

Name the quadrilateral formed, if any, by the following points, and give reasons for your answer.

(i) (–1, –2), (1, 0), (–1, 2), (– 3, 0)

(ii) (–3, 5), (3, 1), (0, 3), (–1, – 4)

(iii) (4, 5), (7, 6), (4, 3), (1, 2)


Solution:

(i) A(–1, –2), B(1, 0), C(–1, 2), D(–3, 0)

Determine distances : AB, BC, CD, DA, AC and BD.

$\mathrm{AB}=\sqrt{(1+1)^{2}+(0+2)^{2}}=\sqrt{4+4}=\sqrt{8}=2 \sqrt{2}$

$\mathrm{BC}=\sqrt{(-1-1)^{2}+(2-0)^{2}}=\sqrt{4+4}=\sqrt{8}=2 \sqrt{2}$

$C D=\sqrt{(-3+1)^{2}+(0-2)^{2}}=\sqrt{4+4}=\sqrt{8}=2 \sqrt{2}$

$D A=\sqrt{(-1+3)^{2}+(-2-0)^{2}}=\sqrt{4+4}=\sqrt{8}=2 \sqrt{2}$

AB = BC = CD = DA

The sides of the quadrilateral are equal ............(1)

$\left.\begin{array}{l}\mathrm{AC}=\sqrt{(\mathbf{1}+\mathbf{1})^{2}+(\mathbf{2}+\mathbf{2})^{2}}=\sqrt{\mathbf{0}+\mathbf{1 6}}=4 \\ \mathrm{BD}=\sqrt{(\mathbf{3}-\mathbf{1})^{2}+(\mathbf{0}-\mathbf{0})^{2}}=\sqrt{\mathbf{1 6}+\mathbf{0}}=4\end{array}\right\}$

Diagonal AC = Diagonal BD..........(2)

From (1) and (2) we conclude that ABCD is a square.

(ii) Let the points be $\mathrm{A}(-3,5), \mathrm{B}(3,1), \mathrm{C}(0,3)$ and $\mathrm{D}(-1,-4)$.

$\therefore A B=\sqrt{(3-(-3))^{2}+(1-5)^{2}}$

$=\sqrt{6^{2}+(-4)^{2}}=\sqrt{36+16}$

$=\sqrt{52}=2 \sqrt{13}$

$B C=\sqrt{(0-3)^{2}+(3-1)^{2}}=\sqrt{9+4}=\sqrt{13}$

$C D=\sqrt{(-1-0)^{2}+(-4-3)^{2}}=\sqrt{(-1)^{2}+(-7)^{2}}$

$=\sqrt{1+49}=\sqrt{50}$

$D A=\sqrt{|-3-(-1)|^{2}+[5-(-4)]^{2}}$

$=\sqrt{(-2)^{2}+(9)^{2}}$

$=\sqrt{4+81}=\sqrt{85}$

$A C=\sqrt{(0-(-3))^{2}+(3-5)^{2}}=\sqrt{(3)^{2}+(-2)^{2}}$

$=\sqrt{9+4}=\sqrt{13}$

$B D=\sqrt{(-1-3)^{2}+(-4-1)^{2}}=\sqrt{(-4)^{2}+(-5)^{2}}$

$=\sqrt{16+25}=\sqrt{41}$

We see that $\sqrt{\mathbf{1 3}}+\sqrt{\mathbf{1 3}}=\mathbf{2} \sqrt{\mathbf{1 3}}$

i.e., AC + BC = AB

A, B and C are collinear. Thus, ABCD is not a quadrilateral.

(iii) Let the points be A(4, 5), B(7, 6), C(4, 3) and D(1, 2).

$\therefore A B=\sqrt{(7-4)^{2}+(6-5)^{2}}=\sqrt{3^{2}+1^{2}}=\sqrt{10}$

$\mathrm{BC}=\sqrt{(4-7)^{2}+(3-6)^{2}}$

$=\sqrt{(-3)^{2}+(-3)^{2}}=\sqrt{18}$

$C D=\sqrt{(\mathbf{1}-\mathbf{4})^{2}+(\mathbf{2}-\mathbf{3})^{2}}$

$=\sqrt{(-3)^{2}+(-1)^{2}}=\sqrt{10}$

DA $=\sqrt{(\mathbf{1}-\mathbf{4})^{2}+(\mathbf{2}-\mathbf{5})^{2}}=\sqrt{\mathbf{9}+\mathbf{9}}=\sqrt{\mathbf{1 8}}$

$A C=\sqrt{(4-4)^{2}+(3-5)^{2}}=\sqrt{0+(-2)^{2}}=2$

$\mathrm{BD}=\sqrt{(1-7)^{2}+(2-6)^{2}}=\sqrt{36+16}=\sqrt{52}$

Since, AB = CD, BC = DA [opposite sides of the quadrilateral are equal]

And $\mathrm{AC} \neq \mathrm{BD} \Rightarrow$ Diagonals are unequal.

$\therefore$ ABCD is a parallelogram.

Leave a comment