Question:
n an AP, if a = 1, an = 20 and Sn = 399, then n is equal to
(a) 19
(b) 21
(c) 38
(d) 42
Solution:
(c) $\because$ $S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$399=\frac{n}{2}[2 \times 1+(n-1) d]$
$798=2 n+n(n-1) d$ ...(i)
and $\quad a_{n}=20$
$\Rightarrow \quad a+(n-1) d=20 \quad\left[\because a_{n}=a+(n-1) d\right]$
$\Rightarrow \quad 1+(n-1) d=20 \Rightarrow(n-1) d=19$ ...(ii)
Using Eq. (ii) in Eq. (j), we get
$798=2 n+19 n$
$\Rightarrow \quad 798=21 n$
$\therefore$ $n=\frac{798}{21}=38$