Question:

$\frac{\sec 8 A-1}{\sec 4 A-1}=$

(a) $\frac{\tan 2 A}{\tan 8 A}$

(b) $\frac{\tan 8 A}{\tan 2 A}$

(c) $\frac{\cot 8 A}{\cot 2 A}$

(d) none of these.

Solution:

(b) $\frac{\tan 8 A}{\tan 2 A}$

We have,

$\frac{\sec 8 A-1}{\sec 4 A-1}=\frac{\frac{1}{\cos 8 A}-1}{\frac{1}{\cos 4 A}-1}$

$=\frac{\cos 4 A}{\cos 8 A} \times \frac{1-\cos 8 A}{1-\cos 4 A}$

$=\frac{\cos 4 A}{\cos 8 A} \times \frac{2 \sin ^{2} 4 A}{2 \sin ^{2} 2 A} \quad\left(2 \sin ^{2} \theta=1-\cos 2 \theta\right)$

$=\frac{(2 \cos 4 A \sin 4 A) \sin 4 A}{2 \times \cos 8 A \sin ^{2} 2 A}$

$=\frac{\sin 8 A \sin 4 A}{\cos 8 A \times 2 \sin 2 A \times \sin 2 A}$

$=\tan 8 A \times \frac{2 \sin 2 A \times \cos 2 A}{2 \sin 2 A \times \sin 2 A}$

$=\tan 8 A \times \cot 2 A$

$=\frac{\tan 8 A}{\tan 2 A}$

Leave a comment