$\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.5}+\ldots+\frac{1}{(4 n-1)(4 n+3)}=\frac{n}{3(4 n+3)}$
Let P(n) be the given statement.
Now,
$P(n)=\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+\ldots+\frac{1}{(4 n-1)(4 n+3)}=\frac{n}{3(4 n+3)}$
Step 1:
$P(1)=\frac{1}{3.7}=\frac{1}{21}=\frac{1}{3(4+3)}$
Hence, $P(1)$ is true.
Step 2:
Let $P(m)$ is true.
Then,
$\frac{1}{3.7}+\frac{1}{7.11}+\ldots+\frac{1}{(4 m-1)(4 m+3)}=\frac{m}{3(4 m+3)}$
To prove: $P(m+1)$ is true.
That is,
$\frac{1}{3.7}+\frac{1}{7.11}+\ldots+\frac{1}{(4 m+3)(4 m+7)}=\frac{m+1}{3(4 m+7)}$
Now,
$P(m)=\frac{1}{3.7}+\frac{1}{7.11}+\ldots+\frac{1}{(4 m-1)(4 m+3)}=\frac{m}{3(4 m+3)}$
$\Rightarrow \frac{1}{3.7}+\frac{1}{7.11}+\ldots+\frac{1}{(4 m-1)(4 m+3)}+\frac{1}{(4 m+3)(4 m+7)}=\frac{m}{3(4 m+3)}+\frac{1}{(4 m+3)(4 m+7)}$
$\left[\right.$ Adding $\frac{1}{(4 m+3)(4 m+7)}$ to both sides $]$
$\Rightarrow \frac{1}{3.7}+\frac{1}{7.11}+\ldots+\frac{1}{(4 m+3)(4 m+7)}=\frac{4 m^{2}+7 m+3}{3(4 m+3)(4 m+7)}=\frac{(4 m+3)(m+1)}{3(4 m+3)(4 m+7)}=\frac{m+1}{3(4 m+7)}$
Thus, $P(m+1)$ is true.
By the $p$ rinciple of $m$ athematical $i$ nduction, $P(n)$ is true for all $n \in N$.