Question:

$\frac{\sin 3 x}{1+2 \cos 2 x}$ is equal to

(a) $\cos x$

(b) $\sin x$

(c) $-\cos x$

(d) $\sin x$

Solution:

(b) $\sin x$

We have,

$\frac{\sin 3 x}{1+2 \cos 2 x}=\frac{3 \sin x-4 \sin ^{3} x}{1+2\left(1-2 \sin ^{2} x\right)}$

$=\frac{3 \sin x-4 \sin ^{3} x}{1+2-4 \sin ^{2} x}$

$=\frac{\sin x\left(3-4 \sin ^{2} x\right)}{\left(3-4 \sin ^{2} x\right)}$

$=\sin x$

Leave a comment