$\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\ldots+\frac{1}{(2 n+1)(2 n+3)}=\frac{n}{3(2 n+3)}$
Let P(n) be the given statement.
Now,
$P(n)=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\ldots+\frac{1}{(2 n+1)(2 n+3)}=\frac{n}{3(2 n+3)}$
Step 1;
$P(1)=\frac{1}{3.5}=\frac{1}{15}=\frac{1}{3(2+3)}$
Hence, $P(1)$ is true.
Step 2:
Let $P(m)$ be true.
Then,
$\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\ldots+\frac{1}{(2 m+1)(2 m+3)}=\frac{m}{3(2 m+3)}$
To prove : $P(m+1)$ is true.
That is,
$\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\ldots+\frac{1}{(2 m+3)(2 m+5)}=\frac{m+1}{3(2 m+5)}$
To prove : $P(m+1)$ is true.
That is,
$\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\ldots+\frac{1}{(2 m+3)(2 m+5)}=\frac{m+1}{3(2 m+5)}$
Now,
$P(m)=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\ldots+\frac{1}{(2 m+1)(2 m+3)}=\frac{m}{3(2 m+3)}$
$\Rightarrow \frac{1}{3.5}+\frac{1}{5.7}+\ldots+\frac{1}{(2 m+1)(2 m+3)}+\frac{1}{(2 m+3)(2 m+5)}=\frac{m}{3(2 m+3)}+\frac{1}{(2 m+3)(2 m+5)}$
$\left[\right.$ Adding $\frac{1}{(2 m+3)(2 m+5)}$ to both side $\left.s\right]$
$\Rightarrow \frac{1}{3.5}+\frac{1}{5.7}+\ldots+\frac{1}{(2 m+3)(2 m+5)}=\frac{2 m^{2}+5 m+3}{3(2 m+3)(2 m+5)}=\frac{(2 m+3)(m+1)}{3(2 m+3)(2 m+5)}=\frac{m+1}{3(2 m+5)}$
Thus, $P(m+1)$ is true.
By the principle of mathematical induction, $P(n)$ is true for all $n \in N$.