$\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\ldots+\frac{1}{(3 n-2)(3 n+1)}=\frac{n}{3 n+1}$
Let P(n) be the given statement.
Now,
$P(n)=\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\ldots+\frac{1}{(3 n-2)(3 n+1)}=\frac{n}{3 n+1}$
Step 1;
$P(1)=\frac{1}{1.4}=\frac{1}{4}=\frac{1}{3 \times 1+1}$
Hence, $P(1)$ is true.
Step 2:
Let $P(m)$ be true.
i.e.,
$\frac{1}{1.4}+\frac{1}{4.7}+\ldots+\frac{1}{(3 m-2)(3 m+1)}=\frac{m}{3 m+1}$
Now,
$P(m)=\frac{1}{1.4}+\frac{1}{4.7}+\ldots+\frac{1}{(3 m-2)(3 m+1)}=\frac{m}{3 m+1}$
$\Rightarrow \frac{1}{1.4}+\frac{1}{4.7}+\ldots+\frac{1}{(3 m-2)(3 m+1)}+\frac{1}{(3 m+1)(3 m+4)}=\frac{m}{3 m+1}+\frac{1}{(3 m+1)(3 m+4)}$
$\left[\right.$ Adding $\frac{1}{(3 m+1)(3 m+4)}$ to both sides $]$
$\Rightarrow \frac{1}{1.4}+\frac{1}{4.7}+\ldots+\frac{1}{(3 m+1)(3 m+4)}=\frac{3 m^{2}+4 m+1}{(3 m+1)(3 m+4)}=\frac{(3 m+1)(m+1)}{(3 m+1)(3 m+4)}=\frac{m+1}{3 m+4}$
Thus, $P(m+1)$ is true.
By the principle of $m$ athematical $i$ nduction, $P(n)$ is true for all $n \in \mathrm{N}$.