$\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\ldots+\frac{1}{n(n+1)}=\frac{n}{n+1}$
Let P(n) be the given statement.
Now,
$P(n)=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\ldots+\frac{1}{n(n+1)}=\frac{n}{n+1}$
Step 1:
$P(1)=\frac{1}{1.2}=\frac{1}{2}=\frac{1}{1+1}$
Hence, $P(1)$ is true.
Step 2:
Let $P(m)$ be true.
Then,
$\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\ldots+\frac{1}{m(m+1)}=\frac{m}{m+1}$
We shall now prove that $P(m+1)$ is true.
i. e.,
$\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\ldots+\frac{1}{(m+1)(m+2)}=\frac{m+1}{m+2}$
Now,
$P(m)=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\ldots+\frac{1}{m(m+1)}=\frac{m}{m+1}$
$\Rightarrow \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\ldots+\frac{1}{m(m+1)}+\frac{1}{(m+1)(m+2)}=\frac{m}{m+1}+\frac{1}{(m+1)(m+2)}$
$\left[\right.$ Adding $\frac{1}{(m+1)(m+2)}$ to both sides $]$
$\Rightarrow \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\ldots+\frac{1}{(m+1)(m+2)}=\frac{m^{2}+2 m+1}{(m+1)(m+2)}=\frac{(m+1)^{2}}{(m+1)(m+2)}=\frac{m+1}{m+2}$
Therefore, $P(m+1)$ is true.
By the principle of $m$ athematical $i$ nduction, $P(n)$ is true for all $n \in \mathrm{N}$.