In figure, if ∠1 =∠2 and ΔNSQ = ΔMTR, then prove that ΔPTS ~ ΔPRQ.
Given $\triangle N S Q \cong \triangle M T R$ and $\angle 1=\angle 2$
To prove $\triangle P T S \sim \Delta P R Q$
Proof Since, $\triangle N S Q \cong \triangle M T R$
So, $S Q=T R$ ...(i)
Also, $\angle 1=\angle 2 \Rightarrow P T=P S$ ...(ii)
[since, sides opposite to equal angles are also equal]
From Eqs. (i) and (ii), $\frac{P S}{S Q}=\frac{P T}{T R}$
$\Rightarrow$ $S T \| Q R$ [by convense of basic proportionality theorem]
$\therefore$ $\angle 1=\angle P Q R$
and $\angle 2=\angle P R Q$
In $\triangle P T S$ and $\triangle P R Q$, [common angles]
$\angle P=\angle P$
$\angle 1=\angle P Q R$
$\angle 2=\angle P R Q$
$\therefore$ $\Delta P T S \sim \Delta P R Q$ [by AAA similarity criterion]
Hence proved.