Verify the property x + y = y + x of rational numbers by taking
(a) x = ½, y = ½
(b) x = -2/3, y = -5/6
(c) x = -3/7, y = 20/21
(d) x = -2/5, y = – 9/10
(a) x = ½, y = ½
In the question is given to verify the property = x + y = y + x
Where, x = ½, y = ½
Then, ½ + ½ = ½ + ½
LHS = ½ + ½
= (1 + 1)/2
= 2/2
= 1
RHS = ½ + ½
= (1 + 1)/2
= 2/2
= 1
By comparing LHS and RHS
LHS = RHS
∴ 1 = 1
Hence x + y = y + x
(b) x = -2/3, y = -5/6
Solution:-
In the question is given to verify the property = x + y = y + x
Where, x = -2/3, y = -5/6
Then, -2/3 + (-5/6) = -5/6 + (-2/3)
LHS = -2/3 + (-5/6)
= -2/3 – 5/6
The LCM of the denominators 3 and 6 is 6
(-2/3) = [(-2×2)/ (3×2)] = (-4/6)
and (-5/6) = [(-5×1)/ (6×1)] = (-5/6)
Then,
= – 4/6 – 5/6
= (- 4 – 5)/ 6
= – 9/6
RHS = -5/6 + (-2/3)
= -5/6 – 2/3
The LCM of the denominators 6 and 3 is 6
(-5/6) = [(-5×1)/ (6×1)] = (-5/6)
and (-2/3) = [(-2×2)/ (3×2)] = (-4/6)
Then,
= – 5/6 – 4/6
= (- 5 – 4)/ 6
= – 9/6
By comparing LHS and RHS
LHS = RHS
∴ -9/6 = -9/6
Hence x + y = y + x
(c) x = -3/7, y = 20/21
Solution:-
In the question is given to verify the property = x + y = y + x
Where, x = -3/7, y = 20/21
Then, -3/7 + 20/21 = 20/21 + (-3/7)
LHS = -3/7 + 20/21
The LCM of the denominators 7 and 21 is 21
(-3/7) = [(-3×3)/ (7×3)] = (-9/21)
and (20/21) = [(20×1)/ (21×1)] = (20/21)
Then,
= – 9/21 + 20/21
= (- 9 + 20)/ 21
= 11/21
RHS = 20/21 + (-3/7)
The LCM of the denominators 21 and 7 is 21
(20/21) = [(20×1)/ (21×1)] = (20/21)
and (-3/7) = [(-3×3)/ (7×3)] = (-9/21)
Then,
= 20/21 – 9/21
= (20 – 9)/ 21
= 11/21
By comparing LHS and RHS
LHS = RHS
∴ 11/21 = 11/21
Hence x + y = y + x
(d) x = -2/5, y = – 9/10
Solution:-
In the question is given to verify the property = x + y = y + x
Where, x = -2/5, y = -9/10
Then, -2/5 + (-9/10) = -9/10 + (-2/5)
LHS = -2/5 + (-9/10)
= -2/5 – 9/10
The LCM of the denominators 5 and 10 is 10
(-2/5) = [(-2×2)/ (5×2)] = (-4/10)
and (-9/10) = [(-9×1)/ (10×1)] = (-9/10)
Then,
= – 4/10 – 9/10
= (- 4 – 9)/ 10
= – 13/10
RHS = -9/10 + (-2/5)
= -9/10 – 2/5
The LCM of the denominators 10 and 5 is 10
(-9/10) = [(-9×1)/ (10×1)] = (-9/10)
and (-2/5) = [(-2×2)/ (5×2)] = (-4/10)
Then,
= – 9/10 – 4/10
= (- 9 – 4)/ 10
= – 13/10
By comparing LHS and RHS
LHS = RHS
∴ -13/10 = -13/10
Hence x + y = y + x