Match the following columns:
(a)
Let R and r be the top and base of the bucket and let h be its height.
Then, R = 20 cm, r = 10 cm and h = 30 cm.
Capacity of the bucket = Volume of the frustum of the cone
$=\frac{\pi h}{3}\left(R^{2}+r^{2}+R r\right)$
$=\frac{22}{7} \times \frac{1}{3} \times 30 \times\left[(20)^{2}+\left(10^{2}\right)+(20 \times 10)\right] \mathrm{cm}^{3}$
$=\frac{220}{7} \times[400+100+200] \mathrm{cm}^{3}$
$=\left(\frac{220}{7} \times 700\right) \mathrm{cm}^{3}$
$=22000 \mathrm{~cm}^{3}$
Hence, $(a) \Rightarrow(q)$
(b)
Let R and r be the top and base of the bucket and let h be its height.
Then, R = 20 cm, r = 12 cm and h = 15 cm.
Slant height of the bucket, $l=\sqrt{h^{2}+(R-r)^{2}}$
$=\sqrt{(15)^{2}+(20-12)^{2}}$
$=\sqrt{225+64}$
$=\sqrt{289}$
$=17 \mathrm{~cm}$
Hence, $(b) \Rightarrow(s)$
(c)
Let R and r be the top and base of the bucket and let l be its slant height.
Then, R = 33 cm, r = 27 cm and h = 10 cm
Total surface area of the bucket $=\pi\left[R^{2}+r^{2}+l(R+r)\right]$
$=\pi \times\left[(33)^{2}+(27)^{2}+10 \times(33+27)\right]$
$=\pi \times[1089+729+600]$
$=2418 \pi \mathrm{cm}^{2}$
Hence, $(c) \Rightarrow(p)$
(d)
Let the diameter of the required sphere be d.
Then, volume of the sphere $=\frac{4}{3} \pi r^{3}$
$=\frac{4}{3} \pi\left(\frac{\mathrm{d}}{2}\right)^{3}$
Therefore,
$\frac{4}{3} \pi\left(\frac{\mathrm{d}}{2}\right)^{3}=\frac{4}{3} \pi(3)^{3}+\frac{4}{3} \pi(4)^{3}+\frac{4}{3} \pi(5)^{3}$
$\Rightarrow \frac{4}{3} \pi \frac{\mathrm{d}^{3}}{8}=\frac{4}{3} \pi \times\left[(3)^{3}+(4)^{3}+(5)^{3}\right]$
$\Rightarrow \frac{\mathrm{d}^{3}}{8}=216$
$\Rightarrow d^{3}=1728$
$\Rightarrow d^{3}=12^{3}$
$\Rightarrow d=12 \mathrm{~cm}$
Hence, $(d) \Rightarrow(r)$