Match each of the sets on the left in the roster form with the same set on the right described in the set-builder form:

Question:

Match each of the sets on the left in the roster form with the same set on the right described in the set-builder form:

(i) $\quad\{A, P, L, E\}$                  (i) $\quad x: x+5=5, x \in Z$

(ii) $\{5,-5\}$                                   (ii) $\{x: x$ is a prime natural number and a divisor of 10$\}$

(iii) $\{0\}$                                       (iii) $\{x: x$ is a letter of the word "RAJASTHAN" $\}$

(iv) $\{1,2,5,10,$,                            (iv) $\{x: x$ is a natural number and divisor of 10$\}$

(v) $\{A, H, J, R, S, T, N\}$             (v) $\quad x: x^{2}-25=0$

(vi) $\{2,5\}$                                   (vi) $\{x: x$ is a letter of the word "APPLE" $\}$

Solution:

(i) {APLE} is a roster form of {x is a letter of the word APPLE}.

(ii) {5, −5} is a roster form of {x : x2 − 25 = 0}.

(iii) {0} is a roster form of  {x : x + 5 = 5, x ∈ Z}.

(iv) {1, 2, 5, 10} is a roster form of {x is a natural number and a divisor of 10}.

(v) {AHJRSTN} is a roster form of {x is a letter of the word RAJASTHAN}.

(vi) {2, 5} is a roster form of {x : x is a prime natural number and a divisor of 10}.

(i) $\{A, P, L, E\}$                               (vi) $\{x: x$ is a letter of the word $A P P L E\}$

(ii) $\{5,-5\}$                                       (v) $\left\{x: x^{2}-25=0\right\}$

(iii) $\{0\}$                                           (i) $\{x: x+5=5, x \in Z\}$

(iv) $\{1,2,5,10\}$                                (iv) $\{x: x$ is a natural number and a divisor of 10$\}$

(v) $\{A, H, J, R, S, T$,$N\}$               (iii) $\{x: x$ is a letter of the word RAJASTHAN $\}$

(vi) $\{2,5\}$                                         (ii) $\{x: x$ is a prime natural number and a divisor of 10$\}$

Leave a comment