Question:
Mass of earth is (5.97 × 1024) kg and mass of moon is (7.35 × 1022) kg. What is the total mass of the two?
Solution:
Mass of the Earth $=5.97 \times 10^{24} \mathrm{~kg}$
Now, $5.97 \times 10^{24}=5.97 \times 10^{(2+22)}=5.97 \times 10^{2} \times 10^{22}=597 \times 10^{22}$
So, the mass of the Earth can also be written as $597 \times 10^{22} \mathrm{~kg}$.
Mass of the Moon $=7.35 \times 10^{22} \mathrm{~kg}$
Sum of the masses of the Earth and the Moon: $=\left(597 \times 10^{22}\right)+\left(7.35 \times 10^{22}\right)=(597+7.35) \times 10^{22}=604.35 \times 10^{22} \mathrm{~kg}$
$=6.0435 \times 100 \times 10^{22}=6.0435 \times 10^{2} \times 10^{22}=6.0435 \times 10^{(2+22)}=6.0435 \times 10^{24} \mathrm{~kg}$