Mark the tick against the correct answer in the following:
Let $a * b=a+a b$ for all $a, b \in Q$. Then,
A. * is not a binary composition
B. $*$ is not commutative
C. $*$ is commutative but not associative
D. $*$ is both commutative and associative
According to the question ,
$\mathrm{Q}=\{\mathrm{a}, \mathrm{b}\}$
$\mathrm{R}=\{(\mathrm{a}, \mathrm{b}): \mathrm{a} * \mathrm{~b}=\mathrm{a}+\mathrm{ab}\}$
Formula
$*$ is commutative if $a * b=b * a$
$*$ is associative if $(\mathrm{a} * \mathrm{~b}) * \mathrm{c}=\mathrm{a} *(\mathrm{~b} * \mathrm{c})$
Check for commutative
Consider, $a * b=a+a b$
And, $b * a=b+b a$
Both equations will not always be true .
Therefore , * is not commutative ……. (1)
Check for associative
Consider, $(a * b) * c=(a+a b) * c=a+a b+(a+a b) c=a+a b+a c+a b c$
And, $a *(b * c)=a *(b+b c)=a+a(b+b c)=a+a b+a b c$
Both the equation are not the same and therefore will not always be true.
Therefore, $*$ is not associative ....... (2)
Now, according to the equations (1), (2)
Correct option will be (B)