Mark the tick against the correct answer in the following:
$\tan \frac{1}{2}\left(\cos ^{-1} \frac{\sqrt{5}}{3}\right)=?$
A. $\frac{(3-\sqrt{5})}{2}$
B. $\frac{(3+\sqrt{5})}{2}$
C. $\frac{(5-\sqrt{3})}{2}$
D. $\frac{(5+\sqrt{3})}{2}$
To Find: The value of $\tan \frac{1}{2}\left(\cos ^{-1} \frac{\sqrt{5}}{3}\right)$
Let, $x=\cos ^{-1} \frac{\sqrt{5}}{3}$
$\Rightarrow \cos x=\frac{\sqrt{5}}{3}$
Now, $\tan \frac{1}{2}\left(\cos ^{-1} \frac{\sqrt{5}}{3}\right)$ becomes
$\tan \frac{1}{2}\left(\cos ^{-1} \frac{\sqrt{5}}{3}\right)=\tan \frac{1}{2}(x)=\tan \frac{x}{2}$
$=\sqrt{\frac{1-\cos x}{1+\cos x}}$
$=\sqrt{\frac{1-\left(\frac{\sqrt{5}}{3}\right)}{1+\frac{\sqrt{5}}{2}}}$
$=\sqrt{\frac{3-\sqrt{5}}{3+\sqrt{5}}}$
$=\sqrt{\frac{3-\sqrt{5}}{3+\sqrt{5}}} \times \sqrt{\frac{3-\sqrt{5}}{3-\sqrt{5}}}$
$\tan \frac{1}{2}\left(\cos ^{-1} \frac{\sqrt{5}}{3}\right)=\frac{3-\sqrt{5}}{2}$