Mark the correct alternative in the following question:

Question:

Mark the correct alternative in the following question:

Let $A=\{1,2,3\}$ and consider the relation $R=\{(1,1),(2,2),(3,3),(1,2),(2,3),(1,3)\}$. Then, $R$ is

(a) reflexive but not symmetric                                                               (b) reflexive but not transitive
(c) symmetric and transitive                                                                    (d) neither symmetric nor transitive

Solution:

We have,

$R=\{(1,1),(2,2),(3,3),(1,2),(2,3),(1,3)\}$

As, $(a, a) \in R \forall a \in A$

So, $R$ is reflexive relation

Also, $(1,2) \in R$ but $(2,1) \notin R$

So, $R$ is not symmetric relation

And, $(1,2) \in R,(2,3) \in R$ and $(1,3) \in R$

So, $R$ is transitive relation

Hence, the correct alternative is option (a).

Leave a comment