Question:
Mark the correct alternative in the following question:
If in an A.P., the pth term is q and (p + q)th term is zero, then the qth term is
(a)
(b) p
(c) p + q
(d) p
Solution:
As, $a_{p}=q$
$\Rightarrow a+(p-1) d=q \quad \ldots \ldots(\mathrm{i})$
Also, $a_{(p+q)}=0$
$\Rightarrow a+(p+q-1) d=0 \quad \ldots$. (ii)
Subtracting (i) from (ii), we get
$a+(p+q-1) d-a-(p-1) d=0-q$
$\Rightarrow(p+q-1-p+1) d=-q$
$\Rightarrow q d=-q$
$\Rightarrow d=\frac{-q}{q}$
$\Rightarrow d=-1$
Substituting $d=-1$ in (i), we get
$a+(p-1) \times(-1)=q$
$\Rightarrow a-p+1=q$
$\Rightarrow a=p+q-1$
Now,
$a_{q}=a+(q-1) d$
$=p+q-1+(q-1) \times(-1)$
$=p+q-1-q+1$
$=p$
Hence, the correct alternative is option (b).