Mark the correct alternative in the following question:
Let Sn denote the sum of first n terms of an A.P. If S2n = 3Sn, then S3n : Sn is equal to
(a) 4
(b) 6
(c) 8
(d) 10
As, $S_{2 n}=3 S_{n}$
$\Rightarrow \frac{2 n}{2}[2 a+(2 n-1) d]=\frac{3 n}{2}[2 a+(n-1) d]$
$\Rightarrow 2[2 a+(2 n-1) d]=3[2 a+(n-1) d]$
$\Rightarrow 4 a+2(2 n-1) d=6 a+3(n-1) d$
$\Rightarrow 4 a+4 n d-2 d=6 a+3 n d-3 d$
$\Rightarrow 6 a-4 a+3 n d-3 d-4 n d+2 d=0$
$\Rightarrow 2 a-n d-d=0$
$\Rightarrow 2 a-(n+1) d=0$
$\Rightarrow 2 a=(n+1) d$ ....(i)
Now,
$\frac{S_{3 n}}{S_{n}}=\frac{\frac{3 n}{2}[2 a+(3 n-1) d]}{\frac{n}{2}[2 a+(n-1) d]}$
$=\frac{3[(n+1) d+(3 n-1) d]}{[(n+1) d+(n-1) d]}$ [ Using (1) ]
$=\frac{3[n d+d+3 n d-d]}{[n d+d+n d-d]}$
$=\frac{3[4 n d]}{[2 n d]}$
$=3 \times 2$
$=6$
Hence, the correct alternative is option (b).