Mark the correct alternative in the following question:
If in an A.P. $S_{n}=n^{2} q$ and $S_{m}=m^{2} q$, where $S_{r}$ denotes the sum of $r$ terms of the A.P., then $S_{q}$ equals
(a) $\frac{q^{3}}{2}$
(b) mnq
(c) $q^{3}$
(d) $\left(m^{2}+n^{2}\right) q$
As, $S_{n}=n^{2} q$
$\Rightarrow \frac{n}{2}[2 a+(n-1) d]=n^{2} q$
$\Rightarrow 2 a+(n-1) d=\frac{n^{2} q \times 2}{n}$
$\Rightarrow 2 a+(n-1) d=2 n q$ ....(1)
Also, $S_{m}=m^{2} q$
$\Rightarrow \frac{m}{2}[2 a+(m-1) d]=m^{2} q$
$\Rightarrow 2 a+(m-1) d=\frac{m^{2} q \times 2}{m}$
$\Rightarrow 2 a+(m-1) d=2 m q \quad \ldots$ (ii)
Subtracting (i) from (ii), we get
$2 a+(n-1) d-2 a-(m-1) d=2 n q-2 m q$
$\Rightarrow(n-1-m+1) d=2 q(n-m)$
$\Rightarrow(n-m) d=2 q(n-m)$
$\Rightarrow d=\frac{2 q(n-m)}{(n-m)}$
$\Rightarrow d=2 q$
Substituting $d=2 q$ in (ii), we get
$2 a+(m-1) 2 q=2 m q$
$\Rightarrow 2 a+2 m q-2 q=2 m q$
$\Rightarrow 2 a=2 q$
$\Rightarrow a=q$
Now,
$S_{q}=\frac{q}{2}[2 a+(q-1) d]$
$=\frac{q}{2}[2 q+(q-1) 2 q]$
$=\frac{q}{2}\left[2 q+2 q^{2}-2 q\right]$
$=\frac{q}{2}\left[2 q^{2}\right]$
$=q^{3}$
Hence, the correct alternative is option (c).