Mark the correct alternative in the following:

Question:

Mark the correct alternative in the following:

Let $\phi(x)=f(x)+f(2 a-x)$ and $f^{\prime \prime}(x)>0$ for all $x \in[0, a] .$ The, $\phi(x)$

A. increases on $[0, a]$

B. decreases on $[0, a]$

C. increases on $[-a, 0]$

D. decreases on $[a, 2 a]$

Solution:

Formula:- (i) The necessary and sufficient condition for differentiable function defined on (a,b) to be strictly increasing on $(a, b)$ is that $f^{\prime}(x)>0$ for all $x \in(a, b)$

$\phi(x)=f(x)+f(2 a-x)$

$\Rightarrow \phi^{\prime}(x)=f^{\prime}(x)-f^{\prime}(2 a-x)$

$\Rightarrow \phi^{\prime \prime}(x)=f^{\prime \prime}(x)+f^{\prime \prime}(2 a-x)$

checking the condition

$\phi(x)$ is decreasing in $[0, a]$

Leave a comment