Mark the correct alternative in the following:
If the function $f(x)=x^{3}-9 k x^{2}+27 x+30$ is increasing on $R$, then
A. $-1 \leq k<1$
B. $k<-1$ or $k>1$
C. $0<\mathrm{k}<1$
D. $-1
Formula:- (i) $a x^{2}+b x+c>0$ for all $x \Rightarrow a>0$ and $b^{2}-4 a c<0$
(ii) $a x^{2}+b x+c<0$ for all $x \Rightarrow a<0$ and $b^{2}-4 a c<0$
(iii) The necessary and sufficient condition for differentiable function defined on $(a, b)$ to be strictly increasing on $(a, b)$ is that $f^{\prime}(x)>0$ for all $x \in(a, b)$
Given:-
$f(x)=x^{3}-9 k x^{2}+27 x+30$
$\frac{\mathrm{d}(\mathrm{f}(\mathrm{x}))}{\mathrm{dx}}=\mathrm{f}^{\prime}(\mathrm{x})=3 \mathrm{x}^{2}-18 \mathrm{kx}+27$
for increasing function $f^{\prime}(x)>0$
$3 x^{2}-18 k x+27>0$
$\Rightarrow x^{2}-6 k x+9>0$
Using formula (i)
$36 k^{2}-36>0$
$\Rightarrow K^{2}>1$
Therefore $-1