Mark the correct alternative in the following:
If the function $f(x)=k x^{3}-9 x^{2}+9 x+3$ is monotonically increasing in every interval, then
A. $k<3$
B. $k \leq 3$
C. $k>3$
D. $k<3$
Formula:- (i) $a x^{2}+b x+c>0$ for all $x \Rightarrow a>0$ and $b^{2}-4 a c<0$
(ii) $a x^{2}+b x+c<0$ for $a l l x \Rightarrow a<0$ and $b^{2}-4 a c<0$
(iii) The necessary and sufficient condition for differentiable function defined on $(a, b)$ to be strictly increasing on $(a, b)$ is that $f^{\prime}(x)>0$ for all $x \in(a, b)$
Given:-
$f(x)=k x^{3}-9 x^{2}+9 x+3$
$\frac{d(f(x))}{d x}=f^{\prime}(x)=3 k x^{2}-18 x+9$
for increasing function $f^{\prime}(x)>0$
$f^{\prime}(x)>0$
$\Rightarrow 3 k x^{2}-18 x+9>0$
$\Rightarrow k x^{2}-6 x+3>0$
using formula (i)
$36-12 k<0$
$\Rightarrow k>3$