Question:
Mark the correct alternative in the following:
The function $f(x)=\cos ^{-1} x+x$ increases in the interval.
A. $(1, \infty)$
B. $(-1, \infty)$
C. $(-\infty, \infty)$
D. $(0, \infty)$
Solution:
Formula:- The necessary and sufficient condition for differentiable function defined on $(a, b)$ to be strictly increasing on $(a, b)$ is that $f^{\prime}(x)>0$ for all $x \in(a, b)$
Given:-
$f(x)=\cos ^{-1} x+x$
$\mathrm{d}\left(\frac{\mathrm{f}(\mathrm{x})}{\mathrm{dx}}\right)=\frac{\mathrm{x}^{2}}{1+\mathrm{x}^{2}}=\mathrm{f}^{\prime}(\mathrm{x})$
Now
$f^{\prime}(x)>0$
$\Rightarrow \frac{\mathrm{x}^{2}}{1+\mathrm{x}^{2}}>0$
$x \in R$
$\Rightarrow X \in(-\infty, \infty)$