Mark the correct alternative in the following:

Question:

Mark the correct alternative in the following:

The function $f(x)=-\frac{x}{2}+\sin x$ defined on $\left[-\frac{\pi}{3}, \frac{\pi}{3}\right]$ is

A. increasing

B. decreasing

C. constant

D. none of these

Solution:

Formula:- (i) The necessary and sufficient condition for differentiable function defined on (a,b) to be strictly increasing on $(a, b)$ is that $f^{\prime}(x)>0$ for all $x \in(a, b)$

Given:-

$f(x)=-\frac{x}{2}+\sin x$

$\frac{\mathrm{d}(\mathrm{f}(\mathrm{x}))}{\mathrm{dx}}=-\frac{1}{2}+\cos \mathrm{x}=\mathrm{f}^{\prime}(\mathrm{x})$

checking the value of $x$

$\cos -\frac{1}{2}>0$

hence increasing

Leave a comment