Mark the correct alternative in each of the following:
If 7th and 13th terms of an A.P. be 34 and 64 respectively, then its 18th term is
(a) 87
(b) 88
(c) 89
(d) 90
In the given problem, we are given 7th and 13th term of an A.P.
We need to find the 26th term
Here,
$a_{7}=34$
$a_{13}=64$
Now, we will find $a_{7}$ and $a_{13}$ using the formula $a_{n}=a+(n-1) d$
So,
$a_{7}=a+(7-1) d$
$34=a+6 d$ .......(1)
Also,
$a_{13}=a+(13-1) d$
$64=a+12 d$.......(2)
Further, to solve for a and d
On subtracting (1) from (2), we get
$64-34=(a+12 d)-(a+6 d)$
$30=a+12 d-a-6 d$
$30=6 d$
$d=\frac{30}{6}$
$d=5$ ......$.(3)$
Substituting (3) in (1), we get
$34=a+6(5)$
$34=a+30$
$a=34-30$
$a=4$
Thus,
$a=4$
$d=5$
So, for $18^{\text {th }}$ term $(n=18)$,
Substituting the above values in the formula, $a_{n}=a+(n-1) d$
$a_{18}=4+(18-1) 5$
$=4+17(5)$
$=4+85$
$=89$
Therefore, $a_{18}=89$
Hence, the correct option is (c).