Question:
Mark the correct alternative in each of the following:
$\int e^{x}\left\{f(x)+f^{\prime}(x)\right\} d x=$
A. $e^{x} f(x)+C$
B. $e^{x}+f(x)+C$
c. $2 e^{x} f(x)+C$
D. $e^{x}-f(x)+C$
Solution:
let $\mathrm{I}=\int e^{x}\left(f(x)+f^{\prime}(x)\right) \mathrm{d}_{x}$
Open the brackets, we get
$I=\left\{\int e^{x} f(x) d x+\int e^{x} f^{\prime}(x) d x\right\}$
$=U+\int e^{x} f^{\prime}(x) d x$
$U=\int e^{x} f(x) d x$
To solve U using integration by parts
$U=f(x) \int e^{x} d x-\int\left[f^{\prime}(x) \int e^{x}\right]$
$=f(x) e^{x}-\int f^{\prime}(x) e^{x}$
$=U+\int e^{x} f^{\prime}(x) d x$
$I=e^{x} f(x)+\int f^{\prime}(x) e^{x} d x-\int e^{x} f^{\prime}(x) d x$
$I=e^{x} f(x)+c$