Mark the correct alternative in each of the following:

Question:

Mark the correct alternative in each of the following:

In a $\triangle \mathrm{ABC}$, if $a=2, \angle B=60^{\circ}$ and $\angle C=75^{\circ}$, then $b=$

(a) $\sqrt{3}$

(b) $\sqrt{6}$

(c) $\sqrt{9}$

 

(d) $1+\sqrt{2}$

Solution:

It is given that $a=2, \angle B=60^{\circ}$ and $\angle C=75^{\circ}$.

In ∆ABC,

$\angle A+\angle B+\angle C=180^{\circ} \quad$ (Angle sum property)

$\Rightarrow \angle A+60^{\circ}+75^{\circ}=180^{\circ}$

 

$\Rightarrow \angle A=180^{\circ}-135^{\circ}=45^{\circ}$

Using sine rule, we get

$\frac{2}{\sin 45^{\circ}}=\frac{b}{\sin 60^{\circ}} \quad\left(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}\right)$

$\Rightarrow b=\frac{2 \times \frac{\sqrt{3}}{2}}{\frac{1}{\sqrt{2}}}=\sqrt{6}$

Hence, the correct answer is option (b).

Leave a comment